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ISWLS: Novel Algorithm for Image
Reconstruction in PET

E. Karali, S. Pavlopoulos, S. Lambropoulou, and D. Koutsouris

Abstract—The purpose of this study is to introduce a novel em-
pirical iterative algorithm for medical image reconstruction, un-
der the short name ISWLS (image space weighted least squares),
which is expected to have image space reconstruction algorithm
(ISRA) properties in noise manipulation and weighted least-
squares (WLS) acceleration of the reconstruction process. We used
phantom data from a prototype small-animal positron emission to-
mography system and the methods presented here are applied to
2-D sinograms. Further, we assess the performance of the new
algorithm by comparing it to the simultaneous version of alge-
braic reconstruction technique (ART), simultaneous algebraic re-
construction technique (SART), to expectation maximization max-
imum likelihood (EM-ML), ISRA, and WLS. All algorithms are
compared in terms of cross-correlation coefficient, reconstruction
time, and contrast-to-noise ratios (CNRs). As it turns out, ISWLS
presents higher CNRs than EM-ML, ISRA, and SART for objects
of different sizes. Also, ISWLS shows similar performance to WLS
during the first iterations but it has better noise manipulation.
Finally, ordered subsets ISWLS (OS-ISWLS), the OS version of
ISWLS, shows its best performance between the first six–nine iter-
ations. Its behavior seems to be a compromise between OS-ISRA
and OS-WLS.

Index Terms—Image reconstruction, positron emission tomog-
raphy (PET), small-animal imaging.

I. INTRODUCTION

IMAGE reconstruction in positron emission tomography
(PET) uses the collected projection data of the object/patient

under examination. Until recently, image reconstruction in com-
mercial clinical PET systems has been performed with analytical
reconstruction algorithms based on the filtered backprojection
method (FBP). FBP is based on direct computation of the inverse
Radon transformation that combines collected data with image
pixels values and offers an immediate mathematical solution
for image formation. Moreover, FBP uses the Fourier theorem
or central section theorem, which connects 1-D Fourier trans-
formation of projection data to 2-D image Fourier transforma-
tion, to avoid image blurring. Analytical techniques present high
computational speed at low computational cost and in general
do not require expensive, powerful computing systems. One of
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the major drawbacks of FBP methods is their lack to incorporate
in the reconstruction process many of the different factors re-
lated to γ-ray production and detection, as well as other factors
affecting image quality (e.g., system geometry, object and septa
scatter, detector characteristics, positron range, photons non-
colinearity, randoms, and photon attenuation). Moreover, FBP
does not preserve image nonnegativity while the effect of miss-
ing data tends to produce streak artifacts in the reconstructed
images [1], [2].

Iterative image reconstruction algorithms have been proposed
as an alternative to conventional analytical methods. Despite
their computational complexity, they become more and more
popular, mostly because they can produce images with better
contrast-to-noise (CNR) and signal-to-noise ratios at a given
spatial resolution, compared to FBP techniques. Iterative meth-
ods are able to incorporate a model of all the physical phenom-
ena during the acquisition process, including scanner charac-
teristics. Based on predetermined criteria and after a series of
successful iterations, they attempt to find the best approach to
the true image of radioactivity spatial distribution. Yet, the high
computational cost and the lack of an efficient termination cri-
terion have prevented, in the previous years, their application in
commercial systems [1]–[3].

Iterative techniques are divided into two main categories: al-
gebraic and statistical. Algebraic techniques were presented as
an alternative to FBP and were used by Hounsfield to reconstruct
images from data collected from the first-generation current
transformer systems. Algebraic methods rely on the assumption
that projection data are connected linearly to image pixels. So,
they try to solve iteratively a linear system of M equations and N
unknowns, where M is the total number of detector tubes and N
is the total number of image pixels. Simultaneous algebraic tech-
nique (SART) is an algebraic method where all image pixels are
updated simultaneously using all projection data [4]. Statistical
techniques are classified to maximum likelihood algorithms and
least-squares methods. Maximum likelihood algorithms are very
popular in the field of image reconstruction. These methods as-
sume that collected data are independent Poisson variables, and
in every iteration step they try to maximize the log-likelihood.
The most famous maximum likelihood technique is the expec-
tation maximization maximum likelihood (EM-ML) algorithm,
which was first presented by Shepp and Vardi [5]. Least-squares
methods suppose that noise in the reconstruction model is nor-
mally distributed with mean value zero and the same standard
deviation σ, namely it has the characteristics of white noise. Im-
age space reconstruction algorithm (ISRA) [6] is a least-squares
reconstruction method introduced by Daube-Witherspoon and
Muehllehner. ISRA guarantees positive approximation of the
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true radiopharmaceutical distribution inside the object of inter-
est if the initial solution is also positive. Moreover, it shows
better noise manipulation than EM-ML. Another least-squares
algorithm is the weighted least-squares technique (WLS), due
to Anderson et al. [7]. WLS assumes that random independent
noise variables present different standard deviations. The matrix
of these standard deviations consists of the expected projection
data. WLS accelerates the reconstruction process and results in
reconstructed images of better spatial resolution.

Depending on the way the initial solution is updated in every
iteration, different algorithmic schemes can be used. In an at-
tempt to speed up known iterative techniques, ordered subsets
(OS) methods were introduced. OS algorithms update simulta-
neously image pixels using a subset of the collected data in every
iteration, without deteriorating reconstructed image quality [8].
The OS version of ISRA is OS-ISRA, of WLS is OS-WLS,
and of EM-ML is ordered subsets expectation maximization
(OSEM). Furthermore, OSEM, due to Hundson and Larkin,
consists of the most popular reconstruction method [9].

The purpose of this study is on the one hand to introduce a
new empirical image reconstruction algorithm, under the short
name ISWLS (image space weighted least squares) [10], pro-
duced by the maximization of an objective function. To max-
imize the objective function, the Kuhn–Tucker condition must
be satisfied. ISWLS is expected to have ISRA properties in
noise manipulation and WLS acceleration of the reconstruction
process. To assess the performance of the new iterative recon-
struction method, we have used phantom data produced from
simulating a prototype small-animal PET system. We compared
reconstruction data with those from the simultaneous versions
of ART (SART), EM-ML, ISRA, and WLS. We also introduce
the OS version of ISWLS (OS-ISWLS) and compare it with the
OSEM, OS-ISRA, and OS-WLS. The methods presented here
are applied to 2-D sinograms.

We note that simultaneous versions of known algorithms,
that is, algorithms where all image pixels are simultaneously
updated in every iteration are of great interest because of their
ability to be implemented in parallel computing architectures,
which decreases drastically the total reconstruction time [8].

II. THEORY

In general, every iterative method relies on the hypothesis
that the projection data y are linearly connected to the image
x of radiopharmaceutical spatial distribution, according to the
equation

y = AT x (1)

where A is a matrix that characterizes the PET system being
used for data acquisition. In bibliography, this matrix is called
the system or probability matrix and it projects image data to the
sinogram domain (the term sinogram refers to the projection data
matrix) [1]. Every element αij of the system matrix A represents
the probability an annihilation event emitted in image pixel i to
be detected in line of response (LORj ). The significance of the
probability matrix lies on the valuable information related to
the data acquisition process; that is it can contain, e.g., number

of detector rings, number of detector elements in every ring,
ring diameter, diameter of transaxial field of view, detector size,
image size, and spatial and angular sampling.

The most commonly used algebraic simultaneous iterative
method is SART, with updating scheme in the kth iteration:

SART : xk
i = xk−1

i +
λk

∑M
j=1 aij

M∑

j=1

aij
yj −

∑N
i ′=1 ai ′j x

k−1
i ′∑N

i ′=1 ai ′j

.

(2)
The relaxation parameter in (2) λk lies in (0,1].

On the other hand, the most commonly used least-squares
algorithms that are based on simultaneous iterative schemes are
ISRA and WLS with updating step in the kth iteration:

ISRA : xk
i = xk−1

i

∑M
j=1 aij yj

∑M
j=1 aij

∑N
i ′=1 ai ′j x

k−1
i ′

(3)

WLS : xk
i = xk−1

i

M∑

j=1

aij y
2
j

(∑N
i ′=1 ai ′j x

k−1
i ′

)2 . (4)

The EM-ML algorithm has an updating step in the kth iteration:

EM − ML : xk
i = xk−1

i

M∑

j=1

aij yj(∑N
i ′=1 ai ′j x

k−1
i ′

) . (5)

A. ISWLS Algorithm

In this study, we propose a new algorithm under the short
name ISWLS. Consider an image discretized into N pixels and
the measured data y collected by M detector tubes. We propose
the following ISWLS estimator of x in (1):

�x = arg min
x

φ(x) subject to xi ≥ 0, i = 1, 2, ..., N (6)

where

φ(x) =
M∑

j=1

[

−

(
yj −

∑N
i=1 aijxi

)3

3

+

(

yj −
2
3

N∑

i=1

aijxi

)(
N∑

i=1

aijxi

)2 ]

. (7)

Under the conditions in problem (6), �x is a solution if and only
if the Kuhn–Tucker condition is satisfied, namely

xi
∂φ(x)
∂xi

∣
∣
∣
∣�
x

= 0 (8)

where

∂φ(x)
∂xi

=
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N∑
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)2

aij + 2aij yj

(
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ai ′j xi

)

− 2aij

(
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ai ′j xi

)2 ]
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=
M∑

j=1

⎛

⎝aij y
2
j − aij

(
N∑

i ′=1

ai ′j xi

)2
⎞

⎠. (9)

According to (9), (8) is written as

xi

M∑

j=1

⎛

⎝aij y
2
j − aij

(
N∑

i ′=1

ai ′j xi

)2
⎞

⎠ = 0. (10)

So, we obtain the fixed point iterative formula for the ith pixel’s
update as follows:

ISWLS : xk
i = xk−1

i

∑M
j=1 aij y

2
j

∑M
j=1 aij

∑N
i ′=1 (ai ′j x

k−1
i ′ )2

. (11)

Moreover, we can derive the OS version of ISWLS, OS-ISWLS,
with updating scheme in the kth iteration for subset Sn

OS-ISWLS : xk
i = xk−1

i

∑
j∈Sn

aij y
2
j

∑
j∈Sn

aij

(∑N
i ′=1 ai ′j x

k−1
i ′

)2 .

(12)

III. RESULTS

A. Comparative Evaluation of Simple Algorithms

For the evaluation of the iterative reconstruction methods pre-
sented in Section II, projection data of a Derenzo-type phantom
have been used. The Derenzo-type phantom consists of sets of
rods filled with F18 , with diameters 4.8, 4, 3.2, 2.4, 1.6, and
1.2 mm, and the same separation between surfaces in the corre-
sponding sets. The rods were surrounded by plastic (polyethy-
lene). Data were produced using Monte Carlo simulation of a
small-animal PET scanner.

Further, 18 × 106 coincidence events were collected. Pro-
jection data were binned to a 2-D sinogram, 55 pixels × 170
pixels in size, which means that data from 55 tubes of response
(TORs) per rotation angle were collected and 170 totally angu-
lar samples were used. Since the two detector heads rotate from
0◦ to 180◦, the angular step size was 1.0647◦.

The system matrix was derived from an analytical method
and calculated once before reconstruction. Each element aij

was computed as the area of intersection Eij of TORj with
image pixel i, according to the equation

aij =
Eij

∑M
j=1 Eij

(13)

where M is the number of sinogram elements (M = 55 × 170).
The calculated system matrix is a sparse matrix. It consists
of zero-valued elements in majority that have no contribution
during iterative reconstruction process. So, only the nonzero el-
ements were stored, resulting in significant reduction in system
matrix size and consequently in required storage. The recon-
structed 2-D images were 128 pixels × 128 pixels in size; thus,
the system matrix consisted of 55 × 170 × 128 × 128 elements
with 4.33% sparsity.

Fig. 1. Reconstructed images with (a) EM-ML, (b) ISRA, (c) WLS, (d) SART,
and (e) ISWLS, after 1, 10, and 50 iterations, respectively.

The initial image estimate for EM-ML, ISRA, WLS, SART,
and ISWLS was

xoi
=

∑M
j=1 yj

N,
i = 1, 2,...,N (14)

where yj is the value of the jth sinogram element and N repre-
sents the total number of image pixels (N = 128 × 128 in this
implementation).

Fig. 1 shows the reconstructed transaxial images with EM-
ML, ISRA, WLS, ISWLS, and SART after 1, 10, and 50
iterations.

In Fig. 2, cross-correlation coefficient c [11] of every iterative
method is plotted versus the number of iterations. The cross-
correlation coefficient c was calculated according to the equation

c=

N∑

i=1

N∑

j=1
(Ireconij − Īrecon)(Irealij − Īreal)

√
N∑

i=1

N∑

j=1
(Ireconij−Īrecon)2

N∑

i=1

N∑

j=1
(Irealij−Īreal)2

(15)
where Īrecon and Īreal are the reconstructed image and the

true phantom activity image mean values, respectively. Cross-
correlation coefficient is a similarity measure between recon-
structed and real radiodistribution image. Its values are in the
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Fig. 2. Cross-correlation coefficient versus the number of iterations for EM-
ML, ISRA, WLS, SART, and ISWLS.

range [−1, 1]. Value c = 1 corresponds to fully correlated im-
ages.

Except for the cross-correlation coefficient that shows the av-
erage performance of the reconstruction methods, local CNRs
[12] for rods with different diameters were calculated. CNRs
for 4.8-, 3.2-, and 1.6–mm rod diameters were computed, us-
ing squared regions-of-interest (ROIs), 4.55, 3.85, and 2.15 mm
in size, respectively. The ROIs were placed inside the corre-
sponding objects. The number of selected ROIs was equal to
the number of same sized objects. ROIs of the same sizes were
positioned in three different background areas, each CNRROI
was defined as

CNRROI =
Rob jR O I

− RBackgR O I

σBackgR O I

(16)

where Rob jR O I
is the mean value of reconstructed objects in the

corresponding ROIs, and RBackgR O I
is the mean value of the

three background ROIs in each case.
Further, σBackgR O I

is the standard deviation of background
values in the corresponding ROIs. The graphs in Fig. 3 illustrate
the variation of CNRROI with respect to the number of iterations
for the three different object diameters.

In Fig. 4, the reconstruction time for every iterative algo-
rithm is presented as a function of the number of iterations.
Reconstruction time calculations were performed on a Pentium
M processor 1400 MHz (Intel Corp., Santa Clara, CA) personal
computer (RAM 1280MB) under Windows XP Professional.

B. Comparative Evaluation of OS Versions

For the evaluation of the OS iterative reconstruction methods,
the same methodology as in part A, was used. The initial image
estimate for OSEM, OS-ISRA, OS-WLS, and OS-ISWLS was
the same as described in (14). The algorithms under evaluation
were OSEM, OS-ISRA, OS-WLS, and OS-ISWLS.

Fig. 5 presents reconstructed images with OSEM, OS-ISRA,
OS-WLS, and OS-ISWLS after 1, 10, and 50 iterations for 15
subsets.

Fig. 3. CNRs versus iterations for (a) 4.8-mm, (b) 3.2-mm, and (c) 1.6-mm
object diameter.

Fig. 4. Reconstruction time/slice as a function of the number of iterations.

In Fig. 6, cross-correlation coefficient c of every OS iterative
method is plotted versus the number of iterations, and in Fig. 7,
CNRs for two objects of different diameter are plotted versus the
number of iterations. CNRs are derived with the same method
as explained in (16).

In Fig. 8, the reconstruction time for every OS iterative algo-
rithm is presented as a function of the number of iterations.

IV. DISCUSSION

EM-ML, ISRA, WLS, SART, and ISWLS achieve high
cross-correlation values as the number of iterations increases.
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Fig. 5. Reconstructed images with (a) OSEM, (b) OS-ISRA, (c) OS-WLS,
and (d) OS-ISWLS, after 1, 10, and 50 iterations using 15 subsets.

Fig. 6. Cross-correlation coefficient of OSEM, OS-ISRA, OS-WLS, and OS-
ISWLS versus the number of iterations.

Cross-correlation coefficients of EM-ML and ISRA present al-
most the same variance as functions of the number of iterations.
Reconstructed images with SART, WLS, and ISWLS achieve
high correlation levels with the real radiodistribution image after
the first ten iterations. Moreover, ISWLS shows the same high
values of cross-correlation coefficient as WLS. As the number
of iterations outreaches 90 to 95, cross-correlation of all iterative
algorithms converges to the same value.

Cross-correlation coefficient is a similarity metric between
two images with pixel intensities linearly connected. If the two
images are identical, the cross-correlation coefficient is 1. In our
research cross-correlation coefficient reaches up to 0.77. This

Fig. 7. CNRs versus iterations for (a) 4.8 mm and (b) 1.6-mm object diameter
for the different OS algorithms.

Fig. 8. Reconstruction time of the OS algorithms, as a function of the number
of iterations.

is because extra corrections prior or during the reconstruction
should be made such as attenuation, scatter, and random cor-
rections. Despite the fact that these corrections have not been
made, the final result of the average performance of ISWLS is
not altered. It is estimated that cross-correlation coefficient will
approach 1 after these corrections are made.

As illustrated in Fig. 3(a), EM-ML converges slowly during
the first 50 iterations to the best approximation of the true image.
After the first 50 iterations the algorithm enhances more image
detail for small-sized objects [see Fig. 3(c)]. However, after that
point, image contrast decreases, while noise component starts
to increase. On the contrary, ISRA, in comparison to EM-ML,
presents better performance between 50–100 iterations, where
it reaches relatively high and constant CNRs values for big-
and small-sized image objects. WLS shows almost identical
noise manipulation as EM-ML. Image contrast starts degrading
after 50 iterations due to increasing noise. On the other hand,
WLS reaches the same CNR values faster than EM-ML in the
first iterations. SART’s performance is a compromise between
EM-ML, ISRA, and WLS during the first 50 iterations. CNRs
of both, small- and big-image objects, achieve adequate values
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(CNR > 3–5, Rose Criterion) [12], while still increasing during
the first 100 iterations. However, SART does not preserve image
nonnegativity. ISWLS presents high CNR ratios from the first
iterations. Although it shows similar performance to WLS, its
CNR ratios do not degrade after 50 iterations but tend to be
stabilized. So, ISWLS presents a better noise manipulation than
WLS. Moreover, it improves reconstruction resolution at the
edges of the field of view.

Reconstruction time of EM-ML, WLS, and SART is al-
most the same as a function of the number of iterations (≈3.8
s/iteration). Although, it is not obvious from Fig. 4, ISRA and
ISWLS are slower than EM-ML, WLS, and SART during the
first nine iterations. Their reconstruction speed is gradually im-
proving with increasing number of iterations. ISWLS and ISRA
reconstruction time converges to the others’ reconstruction time
after ten iterations. The reason for slow reconstruction process
during the first iterations lies in the time needed for backprojec-
tion computations (

∑M
i=1 aij yj for ISRA and

∑M
i=1 aij y

2
j for

ISWLS) in the first iteration.
According to Fig. 6, the OS versions achieve high cross-

correlation coefficients during the first ten iterations. They reach
the value of 0.75 earlier than the simple versions, which they
reach the same value of cross-correlation coefficient after 50
iterations. OS-ISWLS presents the best performance during
the first six–nine iterations. During these iterations, OS-ISWLS
achieves higher cross-correlation coefficient values than OSEM
and shows similar behavior to OS-ISRA. OS-ISRA presents the
highest cross-correlation values as the number of iteration in-
creases beyond ten iterations. After the first ten iterations, the
cross-correlation coefficient of OS-ISWLS decreases, which im-
plies that OS-ISWLS is affected very much from the introduc-
tion of noise. OS-WLS does not show adequate cross-correlation
coefficient values.

Fig. 7 shows that for objects 4.8 mm in diameter all OS
algorithms present similar CNRs. Although it is not apparent
from Fig. 7, OS-ISWLS is preferable for one iteration as far as
CNRs are concerned. In the first iteration it reaches the value of
34.3 for 4.8 mm object diameter (where the others have CNRs’
values < 29) and 2.7 for 1.6-mm object diameter (where the
others have CNRs values < 2.1). In general OS-ISWLS is com-
parable to OSEM and shows better performance than OS-WLS
according to the CNRs graph (see Fig. 7), which indicates that
OS-ISWLS shows better noise manipulation than OS-WLS. OS-
ISRA reaches the highest CNRs for very small objects (1.6 mm
in diameter). To sum up, OS-ISWLS’s performance seems to be
a compromise between OS-ISRA and OS-WLS. We reached to
the same conclusions using 3, 9, and 24 subsets (not shown).

Reconstruction time is the same for all OS algorithms under
study. One iteration lasts 29 s for all OS methods.

The choice of 15 subsets was made after a comparative study
of ISWLS and OS-ISWLS. We compared OS-ISWLS to ISWLS
using 3, 9, 15, and 24 subsets. The comparative criterion was
CNR, calculated as described in (16). Small number of subsets
resulted in CNRs similar to ISWLS. Increasing the number
of subsets resulted in images with high CNRs during the first
ten iterations. Using 15 or 24 subsets the reconstructed images
reaches the highest CNR values before ten iterations. ISWLS

achieves the same highest CNRs after 50 iterations. We chose 15
subsets to 24 because this number of subsets presented smaller
image degradation as the number of iteration increased.

In this study, data were corrected for scanner sensitivity prior
to the reconstruction process. Such a correction could be incor-
porated during the reconstruction process, but that exceeds our
research purpose. Recently sensitivity correction has been com-
bined with FBP to build the weighted filtered backprojection
algorithm and applied to optical tomography data [13].

Our future plan is to combine the new algorithms with pe-
nalized techniques that take into account a priori information
of radiopharmaceutical spatial distribution. A priori informa-
tion usually consists in smoothing factors or anatomical data
in order to reduce reconstruction process dependence on noise
component. We plan to use median root prior (MRP) [14] as a
smoothing factor in combination to one-step-late [15] algorithm
and to evaluate the new MRP algorithm, namely MRP-ISWLS
with established penalized methods.

V. CONCLUSION

In this paper, different simultaneous iterative reconstruction
schemes were applied to data acquired from a simulation of
a small-animal PET scanner. A new iterative scheme was in-
troduced, namely ISWLS. SART, EM-ML, ISRA, WLS, and
ISWLS and their OS versions were implemented and evaluated,
in terms of task-dependent measures for quantization and de-
tection. In general, EM-ML’s and SART’s results are inferior
to ISWLS’s results. ISWLS shows comparable results to WLS
and ISRA, but in relation to them excels, because it combines
WLS’s reconstruction acceleration with ISRA’s good noise ma-
nipulation. OS-ISWLS shows its best performance between the
first six–nine iterations. Its behavior seems to be a compromise
between OS-ISRA and OS-WLS. ISWLS could be preferable
for use in 3-D reconstruction applications, where the precalcu-
lation of the factor

∑M
i=1 aij y

2
j , which is constant, will lessen

the computational cost and demands for high computational
memory.
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